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Abstract

Introduction: Breast cancer (BC) is the most common cancer in women worldwide and has a high 
mortality rate. The fact that the tumor microenvironment affects clinical outcomes of all types of can-
cers underlines the involvement of various immune-related genes (iRGs). Therefore, this study aimed 
to establish an iRGs-based signature for the prognosis of BC patients.

Material and methods: in this study, 12 immune cell infiltrating degrees in 1,102 BC cases from 
The Cancer Genome atlas (TCGa) database were assessed, and Rna-sequencing (Rna-seq) data of 
these samples were analyzed by single-sample gene set enrichment analysis (ssGsEa). Based on the 
results, high, low, and middle immune infiltrating clusters were constructed. a total of 138 overlapped 
differentially expressed genes (dEGs) were identified in the high and low infiltrating clusters, as well 
as in normal and BC samples. univariate Cox regression and Lasso analyses were also performed.  
Furthermore, GsEa suggested some highly enriched pathways in the different immune infiltrating clus-
ters, leading to a better understanding of potential mechanisms of immune infiltration in BC.

Results: Finally, 19 immune-related genes were identified that could be utilized as a potential 
prognostic biomarker for BC. Kaplan-Meier plot and RoC curve, univariate as well as multivariate Cox 
analyses were carried out, which suggested that the 19-iRG-based signature is a significant prognosis 
factor independent of clinical features. Based on the analysis of protein-protein interactions (PPi),  
the three hub genes were identified.

Conclusions: These results provide a new method to predict the prognosis and survival of BC based 
on the three genes’ features.
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Introduction
Breast cancer (BC) is the most frequent malignancy in 

women worldwide, and advanced breast cancer is consid-
ered incurable, leading to high mortality [1]. In the USA 
alone, 276,480 cases of BC were diagnosed last year, ac-
counting for 30% of the overall cancer cases in women [2]. 
Moreover, in spite of having similar tumor characteris-
tics, the post-diagnosis survival rates of BC patients vary 
greatly [3]. Currently, the immune system is identified as 
the determinant for cancer genesis and development [4]. 
Thus, the development of immune-related biomarkers for 
the prognosis of BC patients is required.

The immune microenvironment (IME) plays an im-
portant role in predicting the therapeutic and clinical effi-
cacy of cancer treatments [5, 6]; also, innate and adaptive 

immune responses are associated with the success of treat-
ments and clinical outcomes [4]. In particular, T-cells and 
their infiltrating levels are known to influence the survival 
of BC patients [6]. Previous studies indicated that BCs 
with higher immune infiltrating degrees have favorable 
prognostic outcomes [7-10]. Additionally, higher immune 
infiltrating degree is significantly associated with enhanced 
adjuvant or neoadjuvant chemotherapy (NACT) response 
[11]. These results suggest that it would be promising to 
apply immune prognostic characteristics in BC. Therefore, 
analyzing immune-related genes (IRGs) with the prog-
nostic outcome will lead to the development of effective  
anti-BC treatment strategies.

The single-sample gene set enrichment analysis 
(ssGSEA) method is an extension of the GSEA method, 
working at the level of a single sample rather than a sam-
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ple population as in the original GSEA application. The 
score derived from ssGSEA reflects the degree to which the 
input gene signature is coordinated within a sample [12]. 
The Lasso regression tries to minimize the gap between  
the target feature and the linear combination of the other 
features with the coefficient vector. This means that once 
the model has been accurately trained, fewer data are need-
ed to evaluate the model [13]. So the ssGSEA was adopted 
in this study for grouping BC cases into low, moderate, and 
high immune infiltrating clusters, which were verified by 
the ESTIMATE and CIBERSORT computational meth-
ods. Differentially expressed genes (DEGs) were identified 
in tumor vs. normal and high vs. low immune infiltration 
clusters; 19 immune-associated genes with prognostic  
value were selected and verified by LASSO and univariate 
Cox analyses. Additionally, we evaluated the credibility of 
IRG-based prognostic features by the nomogram. Finally, 
protein-protein interactions (PPI) were screened, and three 
significant genes were selected.

Material and methods

Data collection and clustering

This study obtained The Cancer Genome Atlas (TCGA)- 
BRCA dataset with the corresponding complete clinical 
data by utilizing the R software (Version 4.1.1) TCGA- 
Assembler package (Version 2.0.6) [14]. The data 
collected corresponded to 1,102 tumor samples and  
113 normal breast tissues. The ssGSEA was performed  
on 1,102 BC samples, and they were subsequently grouped 
into low, moderate, and high immune infiltrating clusters 
by utilizing the R software “sparcl” package.

Validation of the immune cluster

Estimation of stromal and immune cells in malignant 
tumors using expression data (ESTIMATE) is a method 
adopted to infer the fraction of stromal and immune cells 
in tumor samples [15]. Thus, the ESTIMATE method was 
used to calculate the stromal, immune, and ESTIMATE 
scores and the tumor purity of the 1,102 BC samples by 
the “estimate” package of R software. In order to eval-
uate the various subtypes of immune cells, we adopted  
the R software “CIBERSORT” package for calculating  
the proportions of 22 immune cells within each BC sample 
according to the gene expression matrix table [16]. Finally, 
the different levels of expression of PD-1 and HLA fami-
lies in the three clusters were evaluated using the “ggpubr” 
package of R software.

Identification of immune-associated genes  
in breast cancer

The DEGs in tumor vs. normal and high vs. low 
immune infiltrating clusters were identified using the 

“DESeq” package of R software. We selected FC ≤ 1/2 
or FC ≥ 2.0 and adjusted the p-value of ≤ 0.05 to be the 
threshold for selecting the DEGs. The same strategy was 
applied for identifying DEGs in cancer and healthy sam-
ples. At last, to carry out further analyses, the intersected 
DEGs were obtained by Venn online tools (http://bioinfor-
matics.psb.ugent.be/webtools/Venn/).

Gene set enrichment analysis
The R software “clusterprofiler” package was adopted 

for gene set enrichment analysis (GSEA) between low and 
high immune infiltrating clusters, whereas the R software 
“enrichplot” package was utilized for visualization. 

Identification and confirmation of immune-
associated gene prognostic signature for breast
cancer

Univariate Cox regression analysis was performed to dis-
tinguish immune-associated genes in BC with detailed clin-
ical information and significance for overall survival (OS) 
based on results obtained from the R software “survival” 
package. Thereafter, the R “glmnet” package was utilized 
for identifying significant genes related to survival from the 
genes selected by univariate Cox regression analysis. The 
BC prognosis signature was established based on the results 
of LASSO regression analysis. Next, we adopted the R soft-
ware “Survminer” package to define median risk score and 
classified cases into low-and high-risk groups. Later, we plot-
ted time-dependent receiver operating characteristic (t-ROC) 
curves and assessed the capacity of our constructed risk 
score in prognosis prediction based on the survival line by R 
software “timeROC”, “survminer”, and “survival” packages. 
Finally, to assess whether our constructed risk score might 
independently predict the OS of BC patients, we conducted 
univariate as well as multivariate Cox regression by utilizing  
the R software “survival” package, with stage, age, and gen-
der being the variables.

Construction and verification of nomogram
The survival of BC patients was predicted using a no-

mogram, which was constructed based on gender, age, risk 
score, and stage using the R software “survival” and “rms” 
packages. The accuracy of the constructed nomogram in 
distinguishing patients was assessed by plotting the cali-
bration curve.

PPI network construction and hub gene 
identification

This study employed the STRING database for con-
structing a PPI network, which was visualized with Cyto- 
scape software (Version 3.7.0). Later, the CytoHubba 
plugin was employed to determine the node degree, and 
the three most significant genes were identified to be  
the hub genes.
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Statistical analysis

R software was used for statistical analysis. Differenc-
es among different risk groups were compared by log-rank 
test and survival analysis. The p-value of < 0.05 was con-
sidered to be statistically significant.

Results

Data collection and clustering

The TCGA-BRCA dataset was downloaded from the 
TCGA database. The ssGSEA method was utilized for as-
sessing immune infiltrating degrees, and enrichment levels 
of 29 immune-related cell types in BC tissues were ob-
tained by unsupervised hierarchical clustering. Based on 
these results, BC samples were classified into three clus-
ters, namely, low, moderate, and high infiltrating clusters 
(Immunity_H, Immunity_M, and Immunity_L) consisting 
of 883, 163, and 56 samples, respectively (Fig. 1A). These 
clusters were verified by employing the ESTIMATE algo-
rithm, which was used to calculate the stromal, immune, 
and ESTIMATE scores and tumor purity based on the 
expression levels of mRNA in BC samples. The stromal, 
ESTIMATE, and immune scores of the high immune in-
filtrating cluster were higher than those of the other two 
clusters, whereas tumor purity showed an opposite trend 
(Fig. 1B-E). On one hand, the highly polymorphic genes 
of the human leukocyte antigen (HLA) system encode cell 
surface proteins and the peptide antigens to T lymphocytes 
triggering immune responses. Specific HLA alloantigens 
were usually used to select cell, tissue and organ donors, 
diagnose autoimmune diseases, determine the risk of drug 
reactions, and guide immunotherapies [17]. On the other 
hand, B-cells and T-cells are responsible for the generation 
of long-lasting protective antibody responses and the de-
velopment of immunological memory following infection 
[18]; hence, aberrant function at numerous points through-
out the B-cell lifecycle can influence their ability to initi-
ate a primary or secondary response [18]. Monocytes and 
macrophages are also phagocytic cells that are important 
for the innate response against infection [18]. From the 
result, the high immune infiltrating cluster exhibited en-
riched proportions of various immune cell types (Fig. 1G). 
Additionally, higher expression levels of PD-1 and many 
HLAs were observed in the low, moderate, and high im-
mune infiltrating clusters (Fig. 1H, I).

Identification of DEGs in tumor vs. normal  
and high vs. low immune infiltrating clusters  
of breast cancer

The DEGs between BC (n = 1102) and normal tissues 
(n = 113) were explored. We obtained 1,573 up-regu-
lated DEGs and 1,513 down-regulated DEGs (Fig. 2A).  
In addition, adjusted p ≤ 0.05 and FC ≤ 1/2.0 or FC ≥ 2.0 

were selected to be the thresholds for selecting the DEGs. 
The same methods were applied in high (n = 163) and 
low (n = 56) immune infiltrating groups. Finally, we 
obtained 126 intersected DEGs with up-regulation and  
12 intersected DEGs with down-regulation in tumor vs. nor-
mal samples and low vs. high immune infiltrating groups  
(Fig. 2C, D).

GSEA enrichment analysis

Based on the Gene Ontology (GO) annotation on genes 
in high and low immune infiltrating clusters, it was ob-
served that these genes are related to MHC class II protein 
complex, natural killer cell chemotaxis, histone demethy-
lase activity, and protein demethylase activity (Fig. 3A). 
Based on the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis, the genes were 
observed to be related to allograft rejection, graft-versus-
host disease, complement and coagulation cascades, and 
biosynthesis of amino acids (Fig. 3B).

Identification and evaluation of 19 immune-
associated genes’ prognostic features for breast 
cancer

138 overlapped DEGs were analyzed by univariate Cox 
regression analysis, and it was observed that 68 DEGs were 
significantly related to OS (p ≤ 0.05) (Fig. 4A). Then, based 
on the LASSO regression analysis, 19 genes (aMiGo2,  
aPCdd1L, CCR7, CFB, CLiC3, EFnB3, F2RL2, FaM-
189a2, iL18, LY6E, MMP1, nMnaT2, nTRK3, oLFML2B, 
Psd2, PsME2, sh3BP1, sPiB, and TnFsF4) were screened 
(Fig. 4B, C). Later, the risk score was constructed by in-
corporating 19 gene levels together with gene coefficients. 
Based on the median risk score, the samples were classified 
into high- and low-risk groups. As suggested by Kaplan-Mei-
er curve analysis, the constructed risk score was effective in 
prognosis because low-risk samples were associated with sig-
nificantly superior survival as compared to high-risk samples 
(Fig. 5A). The risk curve and scatter plot showed that low-
risk samples had a decreased risk coefficient and death rate 
compared with high-risk samples (Fig. 5B, C). The relative 
expression levels of these 19 genes are shown in Figure 5D. 
Furthermore, t-ROC curves were plotted to evaluate the 
accuracy of the constructed 19 ARG-based signature in 
estimating the 3-, 5-, and 10-year OS for BC cases. More-
over, the values falling under the ROC (AUC) curve exhibit  
the good ability of 19 immune-associated gene features in 
predicting OS (Fig. 5E).

Evaluation of 19 immune-related genes’ 
signature as an independent prognostic factor  
in breast cancer patients

We carried out univariate as well as multivariate Cox 
regression analyses to examine whether other factors apart 
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Fig. 1. Construction and validation of breast cancer (BC) immune infiltration clustering. A) Enrichment levels of  
29 immune-related cells and types in the high immune infiltration group, middle immune infiltration group, and low 
immune infiltration group. The ESTIMATE Score, Stromal Score, Immune Score, and Tumor Purity of every patient 
gene are shown combined with the clustering information. B-E) The violin plot shows the difference in ESTIMATE 
Score, Stromal Score, Immune Score, and Tumor Purity between three clusters. F) The expression of most HLAs showed 
a significant difference in the high, middle, and low immune infiltration clusters. *p < 0.05, **p < 0.01, ***p < 0.001 
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Fig. 4. Construction of immune-related gene prognos-
tic signature. A) The p-value and HR of selected genes 
in univariable Cox regression analysis (p < 0.05), and  
the LASSO Cox analysis identified genes with the high-
light. B) The LASSO Cox analysis identified 19 genes 
associated with prognosis. C) The optimal values of the 
penalty parameter were defined by 1,000-round cross- 
validation
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from the constructed 19 IRGs-based signature could serve 
as an independent prognostic factor, including age, gender, 
risk score, and stage. The results indicate that cancer stage 
and risk score and patient’s age independently predict 
prognosis (Fig. 6A, B). Also, t-ROC curves were plotted 
to assess the accuracy of the stage in the estimation of 3-, 
5-, and 10-year OS for BC cases, with the corresponding 
area under curve (AUC) values being 0.669, 0.630, 0.622, 
respectively (Fig. 6C). The above results imply that the  
19 immune-associated genes’ features independently pre-
dict prognosis for BC cases.

Construction and validation of nomogram

To predict 3-, 5-, and 10-year OS for BC cases, a no-
mogram was constructed. The features for the 19 IRGs, 
gender, age, and stage were considered as the variables 
(Fig. 7A), and the calibration curve was compared with  
the nomogram (Fig. 7B-D).

Protein-protein interactions network 
construction and hub gene identification

A PPI network was constructed utilizing the STRING 
online database based on 19 immune-associated genes, 
and Cytoscape software was adopted for visualization. 
The CytoHubba plugin was utilized to determine the node 
degrees, and the top three hub genes (CCR7, IL18, and 
TNFSF4) were identified (Fig. 8A).

Discussion
Breast cancer, like other cancers, is highly heteroge-

neous with diverse biological characteristics and is induced 
by various factors related to gene alteration accumulation 
[19]. Since most of the BC cases are diagnosed and treated 
at the advanced stage, its prognostic outcome remains 
dismal [20]. Increasing evidence has pointed to the uti-
lization of IRGs as biomarkers to predict BC prognosis  

Fig. 6. Assessment of independent prognostic value. Uni-
variate (A) and multivariate (B) Cox regression analysis of 
age, gender, stage and risk score. C) AUC of stage model 
based on ROC curve
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[21, 22]. Finding accurate and early diagnostic immune- 
related biomarkers helps to predict BC prognosis and  
enhance the efficacy of anti-BC therapies.

In this study, the TCGA-BRCA dataset was download-
ed from the TCGA database. Then, the mRNA sequencing 
data were separated into three clusters with 29 types of im-
mune cells by adopting the unsupervised hierarchical clus-
tering algorithm. There were significant differences in the 
immune, ESTIMATE, and stromal scores and tumor purity 
between the low, medium, and high immune infiltrating 
clusters. Furthermore, the expression levels of HLAs and 
PD-L1 and portions of many immune cell types were ana-
lyzed to validate immune infiltrating degrees. Based on the 
results, 138 overlapped IRGs were identified between low 
and high immune infiltrating degrees as well as normal and 
cancer tissues. Univariate Cox and LASSO regression anal-
yses were utilized to review 19 genes (aMiGo2, aPCdd1L, 
CCR7, CFB, CLiC3, EFnB3, F2RL2, FaM189a2, iL18, 
LY6E, MMP1, nMnaT2, nTRK3, oLFML2B, Psd2, 
PsME2, sh3BP1, sPiB, and TnFsF4) that could be uti-
lized as an immune-related biomarker for BC. 

For the further validation of these 19 genes’ clinical 
features, the samples were classified into high- and low-risk 
groups according to the median risk score. The Kaplan-Mei-
er plot, ROC curve, and score indicated that these 19 im-
mune-associated genes have a satisfactory predictive ability. 

Univariate and multivariate Cox regression analyses 
were employed to analyze the relationships between age, 
gender, risk score, and stage. The results indicated that risk 
score, age, and stage might independently predict BC prog-
nosis. Finally, a nomogram was constructed to predict BC 
prognosis based on risk scores obtained from gender, age, 
19 IRGs-based signature, and stage. Additionally, the 3-, 
5-, and 10-year OS of BC was also predicted. 

In order to determine the hub genes of these 19 im-
mune-associated genes, a PPI network was constructed. 
Three hub genes (CCR7, iL18, and TnFsF4), highly ex-
pressed in BC tissues, were selected from this network. 
C-C Motif Chemokine Receptor 7 (CCR7) and its ligands 
have been associated with metastasis [23, 24], and evi-
dence indicates that CCR7 expression is linked to a poorer 
prognosis of BC [25]. Furthermore, CCR7 up-regulation is 
correlated with lymph node metastasis in various types of 
cancers, such as pancreatic [26], esophageal [27], head and 
neck [28], prostate [29], colorectal [30], and breast cancers 
[25]. Interleukin (IL)-18, which is structurally similar to 
IL-1, is a cytokine belonging to the IL1 superfamily. The 
expression of IL-18 is detected in numerous lymphoid and 
nonlymphoid cells, and it is known to play a critical role 
in inflammation [31]. Studies have demonstrated the dual 
roles of IL-18 in tumors; it promotes the immune response, 
mediated by interferon (IFN) production, thereby suggest-
ing its anti-tumoral effects. However, high levels of IL-18 
in some cancers and cancer-related polymorphisms imply 
that it promotes tumor progression [31]. Tumor necrosis 

factor (TNF) superfamily member 4 (TNFSF4) is one of 
the TNF ligand family members, which is related to reg-
ulating activated T-cell adhesion onto the target cells and 
the interactions between T-cells and antigen-presenting 
cells [32]. TNFSF4 and TNFRSF4 form a stimulatory pair 
leading to the proliferation of T-cells and generation of cy-
tokines. Furthermore, TNFRSF4 is highly expressed in BC 
tissues and related to shorter survival time [32]; however, 
its exact function in BC remains unclear.

To sum up, this study adopted machine learning and 
bioinformatics analysis to analyze IRGs in BC samples. 
Altogether three possible prognostic targets were selected; 
however, they should be further validated in clinical trials. 
The findings of the present work provide an approach for 
predicting survival rates in BC patients and offer possible 
therapeutic targets for anti-BC immunotherapy.
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